Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy.
نویسندگان
چکیده
Fluorescence correlation spectroscopy (FCS) was used to investigate the hydrodynamic and photophysical properties of PR1 (phytofluor red 1), an intensely red fluorescent biliprotein variant of the truncated cyanobacterial phytochrome 1 (Cph1Delta, which consists of the N-terminal 514 amino acids). Single-molecule diffusion measurements showed that PR1 has excellent fluorescence properties at the single-molecule level, making it an interesting candidate for red fluorescent protein fusions. FCS measurements for probing dimer formation in solution over a range of protein concentrations were enabled by addition of Cph1Delta apoprotein (apoCph1Delta) to nanomolar solutions of PR1. FCS brightness analysis showed that heterodimerization of PR1 with apoCph1Delta altered the chemical environment of the PR1 chromophore to further enhance its fluorescence emission. Fluorescence correlation measurements also revealed interactions between apoCph1Delta and the red fluorescent dyes Cy5.18 and Atto 655 but not Alexa Fluor 660. The concentration dependence of protein:dye complex formation indicated that Atto 655 interacted with, or influenced the formation of, the apoCph1 dimer. These studies presage the utility of phytofluor tags for probing single-molecule dynamics in living cells in which the fluorescence signal can be controlled by the addition of various chromophores that have different structures and photophysical properties, thereby imparting different types of information, such as dimer formation or the presence of open binding faces on a protein.
منابع مشابه
Measuring single-molecule nucleic acid dynamics in solution by two-color filtered ratiometric fluorescence correlation spectroscopy.
This work presents a general method for determining single-molecule intramolecular dynamics in biomolecules by using a reporter fluorophore, whose fluorescence is quenched or partially quenched as a result of intramolecular motion, and a remote observer fluorophore. These fluorophores were excited independently with two different lasers, and the ratio of the two fluorophores' fluorescence was c...
متن کاملPhotophysical Behaviors of Single Fluorophores Localized on Zinc Oxide Nanostructures
Single-molecule fluorescence spectroscopy has now been widely used to investigate complex dynamic processes which would normally be obscured in an ensemble-averaged measurement. In this report we studied photophysical behaviors of single fluorophores in proximity to zinc oxide nanostructures by single-molecule fluorescence spectroscopy and time-correlated single-photon counting (TCSPC). Single ...
متن کاملSingle-molecule fluorescence spectroscopy: new probes of protein function and dynamics.
Single-molecule fluorescence methods provide new tools for the study of biological systems. Single-pair fluorescence resonance energy transfer has provided detailed information about dynamics and structure of the Ca2+-signaling protein calmodulin. Single-molecule polarization modulation spectroscopy has probed the mechanism by which calmodulin activates the plasma membrane Ca2+ pump.
متن کاملThe mobility of phytochrome within protonemal tip cells of the moss Ceratodon purpureus, monitored by fluorescence correlation spectroscopy.
Fluorescence correlation spectroscopy (FCS) is a versatile tool for investigating the mobilities of fluorescent molecules in cells. In this article, we show that it is possible to distinguish between freely diffusing and membrane-bound forms of biomolecules involved in signal transduction in living cells. Fluorescence correlation spectroscopy was used to measure the mobility of phytochrome, whi...
متن کاملOrientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy.
The comparison of Förster resonance energy transfer (FRET) efficiencies between two fluorophores covalently attached to a single protein or DNA molecule is an elegant approach for deducing information about their structural and dynamical heterogeneity. For a more detailed structural interpretation of single-molecule FRET assays, information about the positions as well as the dynamics of the dye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 30 شماره
صفحات -
تاریخ انتشار 2006